Monday, August 1, 2011

Maya - traditional lighting system for industrial design concept drawings - Step 01

A first stage to developing an integrating lighting system for industrial designers to use in both drawing and computer visualization would be to take advantage of the depth and breadth of knowledge in the profession of cinematography. As indicated in the last post, the number and range of capability of the different kinds of lights and light functions in theatre and film scenarios far exceed those necessary for the average industrial designer. Many designers are able to work with graphically-literate clients who don't require full-value and -color renderings to understand the concept. As a result, line drawings (or the proverbial napkin sketch) often suffice. Adding the complexity and time requirements of an accurate lighting system with shading and cast shadows in a concept drawing may not be worth the effort.

The equity in a system of the latter, however, is that the designer can never predict the client's reaction to an image, especially one rendered very convincingly by hand. The 'excitement' factor in a near-photographic drawing should never be underestimated. The magic of creating a realistic image by hand has never lost it's value in culture or commerce.

My hypothesis is that the principles of successful cinematographic product lighting with a single key light in Maya could help the ID visualizer understand and implement a powerful, if simple, lighting system on paper to accurately portray form and details of the specific concept. As Maria Palazzi, director of ACCAD, put it so succinctly, "Model with light."

The most recent steps in lighting the simple plane of geometric objects are now concerned, first, with a good composition and, second, with object-individualized key, fill, and bounce lights to create not just an interesting image but one that looks 'obvious' compared to a still life set-up with traditional theatre lighting. The objective is to avoid the hyper-realistic possiblities of too many lights, high levels of surface specularity, and unrealistic conditions and, instead, make an image we can relate to and establish a functional system analogy to help designers integrate the intricacies of successful lighting in their drawings.

Figure 01 shows a recent compostion with, now, several fill lights to bring reflected light into the shaded object features and cast shadows. Unless there is no light present, all surfaces and details will have some level of illumination and reflection.


Figure 01





Figure 02 shows a close-up of the image with the influence from the fill-lights. Surfaces formerly unseen in shadow are now more visible. Three-dimensional form is better contoured and represented.




Figure 02


No comments:

Post a Comment